

ADVANCED PARTIAL DIFFERENTIAL EQUATIONS: HOMEWORK 3

KELLER VANDEBOGERT

1. CHAPTER 2, PROBLEM 7

We have by the triangle inequality $|y| - |x| \leq |y - x| \leq |y| + |x|$. For $y \in \partial B(0, r)$, $|y| = r$, so that

$$\frac{1}{(r + |x|)^n} \leq \frac{1}{|y - x|^n} \leq \frac{1}{(r - |x|)^n}$$

On $\partial B(0, r)$. Suppose now that u is harmonic, and in particular satisfies the mean value property. Using the above and Poisson's formula for the ball:

$$\frac{r^2 - |x|^2}{n\alpha(n)r} \int_{\partial B(0, r)} \frac{u(y)}{(r + |x|)^n} dS(y) \leq u(x) \leq \frac{r^2 - |x|^2}{n\alpha(n)r} \int_{\partial B(0, r)} \frac{u(y)}{(r - |x|)^n} dS(y)$$

Where we've used that $u(x) = \frac{r^2 - |x|^2}{n\alpha(n)r} \int_{\partial B(0, r)} \frac{u(y)}{|y - x|^n} dS(y)$ by Poisson's formula. Multiplying the left most and right most terms in the above inequality by r^{n-2} , we find:

$$\frac{(r - |x|)(r + |x|)r^{n-2}}{n\alpha(n)r^{n-1}(r + |x|)^n} \int_{\partial B(0, r)} u(y) dS(y) \leq u(x) \leq \frac{(r - |x|)(r + |x|)r^{n-2}}{n\alpha(n)r^{n-1}(r - |x|)^n} \int_{\partial B(0, r)} u(y) dS(y)$$

Which, by definition, becomes:

$$\frac{(r - |x|)r^{n-2}}{(r + |x|)^{n-1}} \int_{\partial B(0, r)} u(y) dS(y) \leq u(x) \leq \frac{(r + |x|)r^{n-2}}{(r - |x|)^{n-1}} \int_{\partial B(0, r)} u(y) dS(y)$$

Date: September 3, 2017.

But u is harmonic, so by the mean value property, $\int_{\partial B(0,r)} u(y) = u(0)$. Using this, the above implies:

$$\frac{(r - |x|)r^{n-2}}{(r + |x|)^{n-1}}u(0) \leq u(x) \leq \frac{(r + |x|)r^{n-2}}{(r - |x|)^{n-1}}u(0)$$

As desired.

2. CHAPTER 2, PROBLEM 8

Following this hint, we can see that since $u \equiv 1$ solves $\Delta u = 0$ in $B(0, r)$ and $u = 1$ on $\partial B(0, r)$, Poisson's formula for the ball implies:

$$1 = \int_{\partial B(0,r)} K(x, y) dy$$

Where $K(x, y)$ denotes Poisson's kernel. By definition, $G(x, y)$ for the ball is harmonic and smooth for $x \neq y$ and hence given $\epsilon > 0$, we can find δ such that whenever $|x - x_0| < \delta$, $|D^\alpha K(x, y) - D^\alpha K(x_0, y)| < \epsilon$ for any order derivative. In particular, since $\partial B(0, r)$ is compact we see that $D^\alpha u(x) = \int_{\partial B(0,r)} D_x^\alpha K(x, y)g(y)dy$. Using this, let $\epsilon > 0$, and note that since g is continuous on a compact set it is bounded:

(2.1)

$$\begin{aligned} |D^\alpha u(x) - D^\alpha u(x_0)| &\leq \int_{\partial B(0,r)} |D^\alpha K(x, y) - D^\alpha K(x_0, y)| |g(y)| dy \\ &< \epsilon \int_{\partial B(0,r)} |g(y)| dy \\ &\leq \epsilon \|g\|_{L^\infty} S_n \rightarrow 0 \end{aligned}$$

Where S_n denotes the surface area of the n -sphere. Hence u is smooth. Also, it is clear by the above that

$$\Delta u(x) = \int_{\partial B(0,r)} \Delta_x K(x, y)g(y)dy = 0$$

So that u is indeed harmonic. Finally, we must show that $u(x) = g(x)$ on $\partial B(0, r)$. Equivalently, this implies that $\lim_{x \rightarrow x_0} u(x) = g(x_0)$ when $x_0 \in \partial B(0, r)$. By continuity of g , we can find δ for any $\epsilon > 0$ such that $|g(x) - g(x_0)| < \epsilon$ whenever $|x - x_0| < \delta$. First, note that $\int_{\partial B(0, r)} g(x_0) K(x, y) dy = g(x_0)$. Then we can split up our integral as $\int_{\partial B(0, r)} = \int_{\partial B(0, r) \cap B(x_0, \delta)} + \int_{\partial B(0, r) \setminus B(x_0, \delta)}$. We have:

$$(2.2) \quad \begin{aligned} |u(x) - g(x_0)| &\leq \int_{\partial B(0, r) \cap B(x_0, \delta)} K(x, y) |g(y) - g(x_0)| dy \\ &\quad + \int_{\partial B(0, r) \setminus B(x_0, \delta)} K(x, y) |g(y) - g(x_0)| dy \\ &:= I + J \end{aligned}$$

Then, firstly, since $1 = \int_{\partial B(0, r)} K(x, y) dy$, in particular $\int_U K(x, y) < 1$ for any $U \subset B(0, r)$, so we immediately find that

$$I < \epsilon \int_{\partial B(0, r) \cap B(x_0, \delta)} K(x, y) dy < \epsilon$$

For J , we see that by the triangle inequality $|y - x_0| \leq |y - x| + |x - x_0|$ and $|g(x) - g(x_0)| \leq 2\|g\|_{L^\infty}$. In particular, it is clear that for $y \notin B(x_0, \delta)$ and $|x - x_0| < \delta/2$, that $|y - x_0| \leq |y - x| + \frac{1}{2}|x - x_0| \implies \frac{1}{2}|y - x_0| \leq |y - x|$. Employing this in J :

$$(2.3) \quad \begin{aligned} \int_{\partial B(0, r) \setminus B(x_0, \delta)} K(x, y) |g(y) - g(x_0)| dy &\leq \frac{2(r^2 - |x|^2)\|g\|_{L^\infty}}{n\alpha(n)r} \int_{\partial B(0, r) \setminus B(x_0, \delta)} |y - x_0|^{-n} dy \\ &\rightarrow 0 \end{aligned}$$

Since $|x| \rightarrow r$ as $x \rightarrow x_0$, as $x_0 \in \partial B(0, r)$. Then we are done, since we see that $|u(x) - g(x_0)| \rightarrow 0$ as $x \rightarrow x_0$, so that this is indeed a solution.

3. CHAPTER 2, PROBLEM 10

(a). Denoting by v for the odd reflection of $u(x_1, \dots, x_n)$, when $x_n > 0$, $u \equiv v$ so v is obviously C^2 on the upper half. For $x_n < 0$:

$$\begin{aligned}\frac{\partial v}{\partial x_i} &= -\frac{\partial u}{\partial x_i} \quad i \neq n \\ \frac{\partial v}{\partial x_n} &= \frac{\partial u}{\partial x_n}\end{aligned}$$

Which are both continuous in the lower half sphere. Similarly,

$$\begin{aligned}\frac{\partial^2 v}{\partial x_i^2} &= -\frac{\partial^2 u}{\partial x_i^2} \quad i \neq n \\ \frac{\partial^2 v}{\partial x_n^2} &= -\frac{\partial^2 u}{\partial x_n^2}\end{aligned}$$

Thus these derivatives are again continuous, since $u \in C^2(\overline{C^2})$. Using this, in the lower half sphere, we see that $\Delta v = -\Delta u = 0$, so v is harmonic in both the upper and lower half ball, and hence everywhere. Also, we see that on the intersection of their respective boundaries, $v = u(x_1, \dots, x_{n-1}, 0) = 0$.

(b). We can employ Poisson's formula for the ball to find that

$$v(x) = \int_{\partial B(0,1)} K(x, y) v(y) dS(y)$$

Where $K(x, y)$ denotes Poisson's kernel. We have shown that Poisson's kernel is harmonic and that $K(x, y) \in C^2(\overline{B(0,1)})$, and so we find:

$$\frac{\partial v(x)}{\partial x_i} = \int_{\partial B(0,1)} \frac{\partial K(x, y)}{\partial x_i} v(y) dS(y)$$

And since we know that $v(y)$ is continuous on $\partial B(0, 1)$, we see that the product $\frac{\partial K(x, y)}{\partial x_i} v(y)$ is continuous and hence so is the integral, so that $v(x) \in C^1(\bar{U})$. Similarly, the second derivative is easy to calculate:

$$\frac{\partial^2 v(x)}{\partial x_i^2} = \int_{\partial B(0,1)} \frac{\partial^2 K(x, y)}{\partial x_i^2} v(y) dS(y)$$

So that $v \in C^2(\bar{U})$. Finally, noting that $K(x, y)$ is harmonic:

$$\Delta v(x) = \int_{\partial B(0,1)} \Delta_x K(x, y) v(y) dS(y) = 0$$

So that v is harmonic, and we are done.

4. CHAPTER 2, PROBLEM 12

(a). Define $u_\lambda(x, t) := u(\lambda x, \lambda^2 t)$. Then, we see:

$$\frac{\partial u_\lambda}{\partial t} = \lambda^2 \frac{\partial u}{\partial t}(\lambda x, \lambda^2 t)$$

$$\frac{\partial^2 u_\lambda}{\partial x_i^2} = \lambda^2 \frac{\partial^2 u}{\partial x_i^2}(\lambda x, \lambda^2 t)$$

And hence summing over all i :

$$\frac{\partial u_\lambda}{\partial t} - \Delta u_\lambda = \lambda^2 (u_t - \Delta u) = 0$$

So that u_λ also satisfies the heat equation.

(b). Take the partial with respect to λ :

$$\frac{\partial u_\lambda}{\partial \lambda} = x \cdot Du(\lambda x, \lambda^2 x) + 2\lambda t \frac{\partial u}{\partial t}(\lambda x, \lambda^2 x)$$

However, by the above it is clear that $v(x, t) = \frac{\partial u_\lambda}{\partial t}|_{\lambda=0}$, v as defined in the book. Using commutativity of mixed partial derivatives (guaranteed by the smoothness of u):

$$\begin{aligned}
 (4.1) \quad v_t - \Delta v &= \frac{\partial^2}{\partial t \partial \lambda} u_\lambda - \Delta \frac{\partial}{\partial \lambda} u_\lambda \\
 &= \frac{\partial}{\partial \lambda} \left(\frac{\partial u_\lambda}{\partial t} - \Delta u_\lambda \right) = 0
 \end{aligned}$$

Since $\frac{\partial u_\lambda}{\partial t} - \Delta u_\lambda = 0$ by part (a). Hence we see that after setting $\lambda = 1$, v satisfies the heat equation as well.

5. CHAPTER 2, PROBLEM 14

Define $v := e^{ct}u$. Then, by the statement of the problem, we see that v satisfies

$$v_t - \Delta u = e^{ct}f$$

$$v = g$$

In \mathbb{R}_+^{n+1} and on $\partial\mathbb{R}_+^{n+1}$, respectively. Letting $\Phi(x, t) := \frac{1}{(4\pi t)^{n/2}}e^{-|x|^2/4t}$ denote the heat kernel, we can solve for v :

$$v(x, t) = \int_{\mathbb{R}^n} \Phi(x - y, t)g(y)dy + \int_0^t \int_{\mathbb{R}^n} \Phi(x - y, t - s)f(y, s)dyds$$

And using the fact that $v(x, t) := e^{ct}u(x, t)$, multiply the above by e^{-ct} to find:

$$u(x, t) = \int_{\mathbb{R}^n} \Phi(x - y, t)e^{-ct}g(y)dy + \int_0^t \int_{\mathbb{R}^n} \Phi(x - y, t - s)e^{-ct}f(y, s)dyds$$

And the above solves $u_t - \Delta u + cu = f$ in \mathbb{R}_+^{n+1} and $u = g$ on $\partial\mathbb{R}_+^{n+1}$, so we are done.

6. CHAPTER 2, PROBLEM 15

Define $v(x, t) := u(x, t) - g(t)$. Then, it is clear that v satisfies $v_t - v_{xx} = -g'$ in $\mathbb{R}_+ \times (0, \infty)$, $v(x, 0) = g(0) = 0$, and $v(0, t) = 0$. We now extend v by odd reflection, so that for $x < 0$, $v(x, t) := -v(-x, t)$. Then, this extends v to satisfy $v_t - v_{xx} = -g'(t)$ when $x \geq 0$, $v_t - v_{xx} = g'(t)$ for $x < 0$, and $v(x, 0) = 0$. Then, using Duhamel's principle we can immediately solve for v :

$$v(x, t) = \int_0^t \frac{1}{(4\pi(t-s))^{1/2}} \left(- \int_0^\infty e^{\frac{-(x-y)^2}{4(t-s)}} g'(s) dy + \int_{-\infty}^0 e^{\frac{-(x-y)^2}{4(t-s)}} g'(s) dy \right) ds$$

Now, let us consider the term $\int_0^\infty e^{\frac{-(x-y)^2}{4(t-s)}} g'(s) dy$. We have:

$$\begin{aligned} (6.1) \quad \int_0^\infty e^{\frac{-(x-y)^2}{4(t-s)}} g'(s) dy &= \int_{-\infty}^\infty e^{\frac{-(x-y)^2}{4(t-s)}} g'(s) dy - \int_{-\infty}^0 e^{\frac{-(x-y)^2}{4(t-s)}} g'(s) dy \\ &= \int_{-\infty}^\infty e^{\frac{-x^2}{4(t-s)}} g'(s) dy - \int_{-\infty}^0 e^{\frac{-(x-y)^2}{4(t-s)}} g'(s) dy \\ &= g'(s) (4(t-s))^{1/2} \Gamma(1/2) - \int_{-\infty}^0 e^{\frac{-(x-y)^2}{4(t-s)}} g'(s) dy \end{aligned}$$

Plugging this back into our expression for v (and noting that $\Gamma(1/2) = \sqrt{\pi}$):

$$v(x, t) = - \int_0^t g'(s) ds + 2 \int_0^t \frac{1}{(4\pi(t-s))^{1/2}} \int_{-\infty}^0 e^{\frac{-(x-y)^2}{4(t-s)}} g'(s) dy ds$$

Now, of course $\int_0^t g'(s) ds = g(t)$, so using the fact that $v(x, t) = u(x, t) - g(t)$, we have an expression for $u(x, t)$:

$$u(x, t) = 2 \int_0^t \frac{1}{(4\pi(t-s))^{1/2}} \int_{-\infty}^0 e^{\frac{-(x-y)^2}{4(t-s)}} g'(s) dy ds$$

We must now integrate by parts:

$$\begin{aligned}
(6.2) \quad & \int_0^t \frac{1}{(4\pi(t-s))^{1/2}} \int_{-\infty}^0 e^{\frac{-(x-y)^2}{4(t-s)}} dy dg(s) = \frac{g(s)}{(4\pi(t-s))^{1/2}} \int_{-\infty}^0 e^{\frac{-(x-y)^2}{4(t-s)}} dy \Big|_0^t \\
& - \int_0^t \frac{g(s)}{4\sqrt{\pi}(t-s)^{3/2}} \int_{-\infty}^0 e^{\frac{-(x-y)^2}{4(t-s)}} dy ds \\
& + \int_0^t \frac{g(s)}{4\sqrt{\pi}(t-s)^{3/2}} \int_{-\infty}^0 \frac{(x-y)^2 e^{\frac{-(x-y)^2}{4(t-s)}}}{2(t-s)} dy ds \\
& := I - J + K
\end{aligned}$$

We can integrate the term $\int_{-\infty}^0 \frac{(x-y)^2 e^{\frac{-(x-y)^2}{4(t-s)}}}{2(t-s)} dy$ by noticing that $\frac{d}{dy} e^{\frac{-(x-y)^2}{4(t-s)}} = \frac{(x-y)e^{\frac{-(x-y)^2}{4(t-s)}}}{2(t-s)}$. Then:

$$\begin{aligned}
(6.3) \quad & \int_{-\infty}^0 (x-y) d\left(e^{\frac{-(x-y)^2}{4(t-s)}}\right) = \left[(x-y)e^{\frac{-(x-y)^2}{4(t-s)}}\right]_{-\infty}^0 \\
& + \int_{-\infty}^0 e^{\frac{-(x-y)^2}{4(t-s)}} dy \\
& = xe^{\frac{-x^2}{4(t-s)}} + \int_{-\infty}^0 e^{\frac{-(x-y)^2}{4(t-s)}} dy
\end{aligned}$$

Plugging the above into the last term, K , of (6.2):

$$\begin{aligned}
(6.4) \quad & \int_0^t \frac{g(s)}{4\sqrt{\pi}(t-s)^{3/2}} \int_{-\infty}^0 \frac{(x-y)^2 e^{\frac{-(x-y)^2}{4(t-s)}}}{2(t-s)} dy ds = x \int_0^t \frac{xe^{\frac{-x^2}{4(t-s)}} g(s)}{4\sqrt{\pi}(t-s)^{3/2}} ds \\
& + \int_0^t \frac{g(s)}{4\sqrt{\pi}(t-s)^{3/2}} \int_{-\infty}^0 e^{\frac{-(x-y)^2}{4(t-s)}} dy ds
\end{aligned}$$

But this shows that $K = x \int_0^t \frac{xe^{\frac{-x^2}{4(t-s)}} g(s)}{4\sqrt{\pi}(t-s)^{3/2}} ds + J$, and hence, using this in (6.2):

(6.5)

$$\int_0^t \frac{1}{(4\pi(t-s))^{1/2}} \int_{-\infty}^0 e^{\frac{-(x-y)^2}{4(t-s)}} g'(s) dy ds = I + x \int_0^t \frac{xe^{\frac{-x^2}{4(t-s)}} g(s)}{4\sqrt{\pi}(t-s)^{3/2}} ds$$

We proceed to show that $I = 0$. Since $g(0) = 0$, it is obvious that the term inside I evaluated at 0 is 0, since all other terms remain finite. To find the inside of I evaluated at t , suppose that $t - s < \epsilon$ and then let $\epsilon \rightarrow 0^+$. Then, it is clear that $\frac{e^{\frac{-(x-y)^2}{4\epsilon}}}{\epsilon^{1/2}} \rightarrow 0$ uniformly as $\epsilon \rightarrow 0^+$, $x \neq y$, and hence evaluating at t also yields 0, since the only point for which it does not tend to 0 is a singleton and hence integrates to 0. Thus, $I = 0$ and combining all of the above with this, we can finally conclude, using our expression for $u(x, t)$:

$$u(x, t) = \frac{x}{\sqrt{4\pi}} \int_0^t \frac{e^{\frac{-x^2}{4(t-s)}} g(s)}{(t-s)^{3/2}} ds$$

7. CHAPTER 2, PROBLEM 16

Defining $u_\epsilon := u - \epsilon t$ ($\epsilon > 0$), we see that $u_{\epsilon t} - \Delta u_\epsilon = -\epsilon < 0$. This shows that u_ϵ cannot attain a maximum on the interior of U_T , since if this were the case, we would see that $u_{\epsilon t} \geq 0$ (since locally, u must be increasing) and $\Delta u_\epsilon \leq 0$ (locally convex) for some $(x_0, t_0) \in U_T$. But this would then force $u_{\epsilon t} - \Delta u_\epsilon \geq 0$. Hence, u_ϵ cannot attain its maximum on the interior.

Now, denote by M_ϵ the maximum of u_ϵ on the boundary Γ_T , and $M := \max_{\overline{U}_T} u$. By our definition, we certainly have that $u_\epsilon \leq u$. Suppose now for sake of contradiction that u attains its maximum on the interior of U_T . Then, $M - \epsilon t \leq M_\epsilon$, since else u_ϵ would attain its maximum on the interior as well. Hence we have the following chain of inequalities:

$$M - \epsilon t \leq M_\epsilon \leq M$$

Letting $\epsilon \rightarrow 0$, we see that $M_0 = M$. But $M_0 = \max_{\Gamma_T} u$, hence we conclude:

$$\max_{\overline{U}_T} u = \max_{\Gamma_T} u$$

Contradicting the fact that u attains its maximum on the interior. Hence the assertion follows.

8. CHAPTER 2, PROBLEM 17

(a). Let $E(r) := E(0, 0; r)$, where u is a subsolution of the heat equation. Without loss of generality, we can assume $(x, t) = (0, 0)$. Then, define $\psi(y, s) := -\frac{n}{2} \log(-4\pi s) + \frac{|y|^2}{4s} + n \log(r)$, where $s \leq 0$, and note that ψ restricted to $\partial E(r) \setminus (0, 0)$ vanishes. Define:

$$\begin{aligned} \phi(r) &:= \frac{1}{r^n} \iint_{E(r)} u(y, s) \frac{|y|^2}{s^2} dy ds \\ (8.1) \quad &= \iint_{E(1)} u(ry, r^2 s) \frac{|y|^2}{s^2} dy ds \end{aligned}$$

The second equality comes from the natural change of variable $y \mapsto ry$, $s \mapsto r^2 s$. Now we can differentiate ϕ with respect to r :

$$\begin{aligned} \phi'(r) &= \iint_{E(1)} Du \cdot y \frac{|y|^2}{s^2} + 2ru_s \frac{|y|^2}{s^2} dy ds \\ (8.2) \quad &= \frac{1}{r^{n+1}} \iint_{E(r)} Du \cdot y \frac{|y|^2}{s^2} + 2u_s \frac{|y|^2}{s^2} dy ds \\ &:= I + J \end{aligned}$$

Now we want to consider the term J . Note that $|y|^2/s^2 = 2D\psi \cdot y$, where ψ defined above. Using this,

$$J = \frac{1}{r^{n+1}} \iint_{E(r)} 4u_s D\psi \cdot y dy ds$$

Now integrate by parts with respect to y , and note that our boundary term vanishes. Then, $D(u_s y) = Du_s \cdot y + Dy \cdot u_s$. But Dy is merely a vector of 1's, and hence $Dy \cdot u = nu_s$. Using this,

$$(8.3) \quad \frac{1}{r^{n+1}} \iint_{E(r)} 4u_s D\psi \cdot y dy ds = -\frac{1}{r^{n+1}} \iint_{E(r)} 4\psi Du_s \cdot y + 4nu_s \psi dy ds$$

Now integrate the first term by parts with respect to s . Then, $\psi_s = -\frac{n}{2s} - \frac{|y|^2}{4s^2}$. Using this:

$$(8.4) \quad \begin{aligned} -\frac{1}{r^{n+1}} \iint_{E(r)} 4\psi Du_s \cdot y + 4nu_s \psi dy ds &= -\frac{1}{r^{n+1}} \iint_{E(r)} -4\psi_s Du \cdot y + 4nu_s \psi dy ds \\ &= -\frac{1}{r^{n+1}} \iint_{E(r)} \frac{2n}{s} Du \cdot y + \frac{|y|^2}{s^2} Du \cdot y + 4nu_s \psi dy ds \\ &= -\frac{1}{r^{n+1}} \iint_{E(r)} \frac{2n}{s} Du \cdot y + 4nu_s \psi dy ds - I \end{aligned}$$

Combining this with our expression for $\phi'(r)$:

$$\phi'(r) = -\frac{1}{r^{n+1}} \iint_{E(r)} \frac{2n}{s} Du \cdot y + 4nu_s \psi dy ds$$

But u is a subsolution. Hence, $u_s \leq \Delta u$. We want to integrate this by parts:

$$(8.5) \quad \begin{aligned} -\frac{1}{r^{n+1}} \iint_{E(r)} \frac{2n}{s} Du \cdot y + 4nu_s \psi dy ds &\geq -\frac{1}{r^{n+1}} \iint_{E(r)} \frac{2n}{s} Du \cdot y + 4n\Delta u \psi dy ds \\ &= \frac{1}{r^{n+1}} \iint_{E(r)} -\frac{2n}{s} Du \cdot y + 4nDu \cdot D\psi dy ds \end{aligned}$$

Noting the form of ψ , we see that $D\psi = \frac{y}{2s}$. Hence:

$$\frac{1}{r^{n+1}} \iint_{E(r)} -\frac{2n}{s} Du \cdot y + 4n Du \cdot D\psi dy ds = \frac{1}{r^{n+1}} \iint_{E(r)} Du \cdot \left(-\frac{2n}{s} y + 4n \frac{y}{2s} \right) dy ds = 0$$

Combining this with the above, we find that $\phi'(r) \geq 0$, so that ϕ is an increasing function. This means that it attains its minimum as $r \rightarrow 0$.

$$\begin{aligned} \lim_{r \rightarrow 0} \phi(r) &= \lim_{r \rightarrow 0} \frac{1}{r^n} \iint_{E(r)} u(y, s) \frac{|y|^2}{s^2} dy ds \\ (8.6) \quad &= \lim_{r \rightarrow 0} \iint_{E(1)} u(ry, r^2 s) \frac{|y|^2}{s^2} dy ds \\ &= u(0, 0) \iint_{E(1)} \frac{|y|^2}{s^2} dy ds \end{aligned}$$

Our task is to compute $\iint_{E(1)} \frac{|y|^2}{s^2} dy ds$. Recall that

$$E(1) = \{(y, s) : s \leq 0, \frac{e^{-\frac{|y|^2}{4s}}}{(-4\pi s)^{n/2}} \geq 1\}$$

Then, by basic manipulations we see that $|y|^2 \leq 2ns \log(-4\pi s)$ in $E(1)$. Also, since $|y|^2 \geq 0$, we see that $s \geq -\frac{1}{4\pi}$. Hence,

$$\iint_{E(1)} \frac{|y|^2}{s^2} dy ds = \int_{-1/4\pi}^0 \frac{1}{s^2} \int_{|y|^2 \leq 2ns \log(-4\pi s)} |y|^2 dy ds$$

Converting to spherical coordinates, $|y| \mapsto r$:

$$\begin{aligned} (8.7) \quad &\int_{-1/4\pi}^0 \frac{1}{s^2} \int_{|y|^2 \leq 2ns \log(-4\pi s)} |y|^2 dy ds = \frac{2\pi^{n/2}}{\Gamma(n/2)} \int_{-1/4\pi}^0 \frac{1}{s^2} \int_0^{(2ns \log(-4\pi s))^{1/2}} r^{n+1} dr ds \\ &= \frac{2\pi^{n/2}}{(n+2)\Gamma(n/2)} \int_{-1/4\pi}^0 (2ns \log(-4\pi s))^{n/2+1} s^{-2} ds \\ &= \frac{2 \cdot (2n)^{n/2+1} \pi^{n/2}}{(n+2)\Gamma(n/2)} \int_0^{1/4\pi} s^{n/2-1} \left(\log\left(\frac{1}{4\pi s}\right) \right)^{n/2+1} ds \end{aligned}$$

Now make the change of variable $u = \log\left(\frac{1}{4\pi s}\right)$. Our bounds will change as $\int_0^{1/4\pi} \rightarrow \int_\infty^0$:

$$\begin{aligned}
 & \frac{2 \cdot (2n)^{n/2+1} \pi^{n/2}}{(n+2)\Gamma(n/2)} \int_0^{1/4\pi} s^{n/2-1} \left(\log\left(\frac{1}{4\pi s}\right)\right)^{n/2+1} ds \\
 &= \frac{2 \cdot (2n)^{n/2+1} \pi^{n/2}}{(n+2)\Gamma(n/2)(4\pi)^{n/2}} \int_0^\infty (e^{-nu/2}) u^{n/2+1} du \\
 &= \frac{2 \cdot (2n)^{n/2+1} \pi^{n/2}}{(n+2)\Gamma(n/2)(4\pi)^{n/2}} \left(\frac{2}{n}\right)^{n/2+2} \int_0^\infty e^{-t} t^{n/2+1} dt \\
 &= \frac{2 \cdot (2n)^{n/2+1} \pi^{n/2}}{(n+2)\Gamma(n/2)(4\pi)^{n/2}} \left(\frac{2}{n}\right)^{n/2+2} \Gamma(n/2+2) \\
 (8.8) \quad &= \frac{(2n)^{n/2+1}}{(n/2+1)\Gamma(n/2)4^{n/2}} \left(\frac{2}{n}\right)^{n/2+2} (n/2+1)\Gamma(n/2+1) \\
 &= \frac{(2n)^{n/2+1}}{\Gamma(n/2)2^n} \left(\frac{2}{n}\right)^{n/2+2} (n/2)\Gamma(n/2) \\
 &= \frac{2^{n/2+1} n^{n/2+1}}{2^n} \frac{2^{n/2+2}}{n^{n/2+2}} (n/2) \\
 &= \frac{2^{n+2}}{2^n} = 2^2 = 4
 \end{aligned}$$

And hence we see $\lim_{r \rightarrow 0} \phi(r) = 4u(0, 0)$. Since $(0, 0)$ can be translated to any general coordinate (x, t) , we conclude:

$$u(x, t) \leq \frac{1}{4r^n} \iint_{E(x, t; r)} u(y, s) \frac{|x-y|^2}{(t-s)^2} dy ds$$

As asserted, and we are done.

(b). Suppose u attains its maximum at the point (x_0, t_0) . Then, by part a, whenever $0 < r < \text{dist}((x, t), \partial U_T)$:

$$M = u(x_0, t_0) \leq \frac{1}{4r^n} \iint_{E(x_0, t_0; r)} u(y, s) \frac{|x-y|^2}{(t-s)^2} dy ds \leq M \frac{1}{4r^n} \iint_{E(r)} \frac{|x-y|^2}{(t-s)^2} dy ds$$

By the work of part (a), it is seen that $\frac{1}{4r^n} \iint_{E(x_0, t_0; r)} \frac{|x-y|^2}{(t-s)^2} dy ds = 1$ by a simple change of variable. We then conclude that $u(x, t) = M$

for all $(x, t) \in E(x_0, t_0; r)$. However, the set $\{(x, t) : u(x, t) = M\}$ is a closed set and the above shows that it is also an open set. Since U_T is connected, the only clopen subset of U_T is the entire set itself. Then, $u(x, t) = M$ for all (x, t) , implying u is constant.

Then, if we assumed that u were not constant and attained its maximum on the interior, we can apply the above argument to see that u attains its maximum in some heat ball contained in U_T . But this forces u to be constant, a contradiction. Hence, u attains its maximum on the boundary, and:

$$\max_{\bar{U}_T} u = \max_{\Gamma_T} u$$

As asserted.

(c). Define $v := \phi(u)$, where ϕ is smooth and convex, implying $\phi'' \geq 0$.

Then, we compute:

$$\begin{aligned} \frac{\partial}{\partial x_i} \phi(u) &= \frac{\partial \phi}{\partial u} \frac{\partial u}{\partial x_i} \\ \frac{\partial}{\partial x_i} \frac{\partial \phi}{\partial u} \frac{\partial u}{\partial x_i} &= \frac{\partial^2 \phi}{\partial u^2} \left(\frac{\partial u}{\partial x_i} \right)^2 + \frac{\partial \phi}{\partial u} \frac{\partial^2 u}{\partial x_i^2} \\ \text{Summing over } i, \Delta v &= \sum_i \frac{\partial^2 \phi}{\partial u^2} \left(\frac{\partial u}{\partial x_i} \right)^2 + \frac{\partial \phi}{\partial u} \Delta u. \text{ Also, } v_t = \frac{\partial \phi}{\partial u} \frac{\partial u}{\partial t}. \end{aligned}$$

Putting this all together:

$$\begin{aligned} v_t - \Delta v &= \frac{\partial \phi}{\partial u} \frac{\partial u}{\partial t} - \sum_i \frac{\partial^2 \phi}{\partial u^2} \left(\frac{\partial u}{\partial x_i} \right)^2 - \frac{\partial \phi}{\partial u} \Delta u \\ (8.9) \quad &= \frac{\partial \phi}{\partial u} \left(u_t - \Delta u \right) - \sum_i \frac{\partial^2 \phi}{\partial u^2} \left(\frac{\partial u}{\partial x_i} \right)^2 \\ &= - \sum_i \frac{\partial^2 \phi}{\partial u^2} \left(\frac{\partial u}{\partial x_i} \right)^2 \leq 0 \end{aligned}$$

Where the last step uses convexity of ϕ . Then we see that this is indeed a subsolution.

(d). Define $v := |Du|^2 + u_t^2$, where u_t solves the heat equation. Then, we first calculate:

$$\begin{aligned}\frac{\partial}{\partial x_i} |Du|^2 &= 2Du \cdot Du_{x_i} \\ \frac{\partial}{\partial x_i} 2Du \cdot Du_{x_i} &= 2|Du_{x_i}|^2 + 2Du \cdot Du_{x_i x_i}\end{aligned}$$

And hence, from the above, $\Delta|Du|^2 = 2 \sum_i |Du_{x_i x_i}|^2 + 2Du \cdot D(\Delta u)$.

Likewise, it is obvious that $\frac{\partial}{\partial t} |Du|^2 = 2Du \cdot Du_t$. We also see:

$$\begin{aligned}\frac{\partial}{\partial x_i} u_t^2 &= 2u_t u_{tx_i} \\ \frac{\partial}{\partial x_i} 2u_t u_{tx_i} &= 2u_{tx_i}^2 + 2u_t u_t x_i x_i\end{aligned}$$

And similarly, summing over i , $\Delta u_t^2 = 2 \sum_i u_{tx_i}^2 + 2u_t(\Delta u)_t$. Also, $\frac{\partial}{\partial t} u_t^2 = 2u_t u_{tt}$. Using all of the above:

$$\begin{aligned}v_t - \Delta v &= 2Du \cdot Du_t + 2u_t u_{tt} - 2 \sum_i |Du_{x_i x_i}|^2 - 2Du \cdot D(\Delta u) - 2 \sum_i u_{tx_i}^2 - 2u_t(\Delta u)_t \\ &= 2Du \cdot D(u_t - \Delta u) + 2u_t(u_t - \Delta u)_t - 2 \sum_i (|Du_{x_i x_i}|^2 + u_{tx_i}^2) \\ &= -2 \sum_i (|Du_{x_i x_i}|^2 + u_{tx_i}^2) \leq 0\end{aligned}$$

So we conclude that v is indeed a subsolution as asserted.

9. CHAPTER 2, PROBLEM 18

Suppose that $u_{tt} - \Delta u = 0$ in $\mathbb{R}^n \times (0, \infty)$, with $u(x, 0) = 0$ and $u_t(x, 0) = h$. Then, set $v := u_t$.

It is clear that $v_{tt} - \Delta v = (u_{tt} - \Delta u)_t = 0$ in $\mathbb{R}^n \times (0, \infty)$. Similarly, $v(x, 0) = u_t(x, 0) = h$.

Finally, $v_t(x, 0) = u_{tt}(x, 0) = \Delta u(x, 0)$. But $u(x, 0) = 0$, and hence $\Delta u(x, 0) = 0$, so that $v_t(x, 0) = 0$, as desired.

10. CHAPTER 2, PROBLEM 19

(a). Suppose $u_{xy} = 0$. Then, certainly $u_x = f(x)$, where f is any function. Integrating again, we see that $u(x, y) = \int_{x_0}^x f(x)dx + g(y)$. Redefining our functions, we conclude that $u(x, y) = F(x) + G(y)$ for arbitrary functions F and G .

(b). Set $\xi = x + t$ and $\eta = x - t$. Then, for $u(\xi, \eta)$, employ the chain rule to find:

$$u_t(\xi, \eta) = u_\xi - u_\eta$$

$$u_{tt}(\xi, \eta) = u_{\xi\xi} - 2u_{\xi\eta} + u_{\eta\eta}$$

Similarly,

$$u_x(\xi, \eta) = u_\xi + u_\eta$$

$$u_{xx}(\xi, \eta) = u_{\xi\xi} + 2u_{\xi\eta} + u_{\eta\eta}$$

Assuming first that $u_{tt} - u_{xx} = 0$, subtracting the above becomes $-4u_{\xi\eta} = 0$, so $u_{\xi\eta} = 0$. Conversely, if $u_{\xi\eta} = 0$, then, noting that $x = \eta/2 + \xi/2$ and $t = \xi/2 - \eta/2$:

$$u_\xi = u_x/2 + u_t/2$$

$$u_{\xi\eta} = u_{xx}/4 - u_{tt}/4$$

And hence $u_{tt} - u_{xx} = 0$.

(c). Using the previous two parts, we can immediately deduce that if $u_{tt} - u_{xx} = 0$, then $u = F(x + t) + G(x - t)$ for some functions F , G . Suppose that $u(x, 0) = g$, $u_t(x, 0) = h$. Then, this implies that $g(x) = F(x) + G(x)$ and $h(x) = F'(x) - G'(x)$. Solving for F and G , we find:

$$\begin{aligned} F'(x) &= \frac{1}{2}(g'(x) + h(x)) \\ G'(x) &= \frac{1}{2}(g'(x) - h(x)) \end{aligned}$$

And hence, after integrating we find:

$$\begin{aligned} (10.1) \quad u(x, t) &= \frac{1}{2} \left(\int_0^{x+t} g'(y) + h(y) dy + \int_0^{x-t} g'(y) - h(y) dy \right) \\ &= \frac{1}{2} \left(g(x+t) + g(x-t) \right) + \frac{1}{2} \left(\int_0^{x+t} h(y) dy - \int_0^{x-t} h(y) dy \right) \\ &= \frac{1}{2} \left(g(x+t) + g(x-t) \right) + \frac{1}{2} \int_{x-t}^{x+t} h(y) dy \end{aligned}$$

Which is precisely D'Alembert's solution, so we are done.

(d). Suppose first that u is a left moving wave. In particular, this means that $u_x + u_t = 0$, where $u(x, 0) = g(x)$. Then, this is merely the solution to the transport equation, so $u(x, t) = g(x - t)$. Using this, we also know that $u_t(x, 0) = h(x)$. But $u_t = -g'(x - t) \implies u_t(x, 0) = -g'(x)$. Then, we see that $h(x) = -g'(x)$.

Similarly, if we have that u is a right moving wave, u satisfies $u_t - u_x = 0$, with $u(x, 0) = g(x)$. Again, using the solution to the transport equation, $u(x, t) = g(x + t)$. This then shows that $u_t = g'(x + t)$ and hence $g'(x) = h(x)$, and these are the conditions for the solution being a left and right moving wave.

11. CHAPTER 2, PROBLEM 24

(a). Suppose u solves the wave equation in $\mathbb{R} \times (0, \infty)$. Then, with $k(t) := \frac{1}{2} \int_{-\infty}^{\infty} u_t^2(x, t) dx$ and $p(t) = \frac{1}{2} \int_{-\infty}^{\infty} u_x^2(x, t) dx$. Then, u can of course be solved using D'Alembert's solution. Firstly, however, note:

$$\begin{aligned}\frac{d}{dt}k(t) &= \int_{-\infty}^{\infty} u_t u_{tt} dx \\ \frac{d}{dt}p(t) &= \int_{-\infty}^{\infty} u_x u_{xt} dx\end{aligned}$$

Recalling that $u_{tt} = u_{xx}$, we can now integrate the expression $\int_{-\infty}^{\infty} u_t u_{tt} dx = \int_{-\infty}^{\infty} u_t u_{xx} dx$ by parts.

$$\int_{-\infty}^{\infty} u_t u_{xx} dx = u_t u_x \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} u_x u_{xt} dx$$

Since g and h have compact support and noticing the form of D'Alembert's solution, this immediately implies that $u_t u_x \Big|_{-\infty}^{\infty} = 0$. Then,

$$\frac{d}{dt}k(t) + \frac{d}{dt}p(t) = - \int_{-\infty}^{\infty} u_x u_{xt} dx + \int_{-\infty}^{\infty} u_x u_{xt} dx = 0$$

And hence $k(t) + p(t)$ is a constant with respect to t .

(b). Using parts (a) and (b) of the previous problem, we know that $u(x, t) = F(x + t) + G(x - t)$ for some functions F, G . Noting the dependence on our initial conditions for D'Alembert's solution, we can also conclude immediately that F and G must have compact support.

Now, it is simple to see:

$$u_t = F'(x + t) - G'(x - t)$$

$$u_x = F'(x + t) + G'(x - t)$$

And hence:

$$\int_{-\infty}^{\infty} u_t^2 - u_x^2 dx = -4 \int_{-\infty}^{\infty} F'(x+t)G'(x-t)dx$$

But for any compactly supported function, its derivative must also be compactly supported. Suppose that the support of both of these is contained in the interval $[-M, M]$ for sufficiently large M . Then for any x , it is never possible for $x-2M$ and $x+2M$ to both be contained in $[-M, M]$, since else the length of this interval would be at least $4M$. In other words, for $t > 2M$, either $G'(x-t)$ or $F'(x+t)$ must vanish, implying that

$$k(t) = p(t)$$

For sufficiently large t .