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1. Chapter 2, Problem 7

We have by the triangle inequality |y| − |x| 6 |y−x| 6 |y|+ |x|. For

y ∈ ∂B(0, r), |y| = r, so that

1

(r + |x|)n
6

1

|y − x|n
6

1

(r − |x|)n

On ∂B(0, r). Suppose now that u is harmonic, and in particular sat-

isfies the mean value property. Using the above and Poisson’s formula

for the ball:

r2 − |x|2

nα(n)r

ˆ
∂B(0,r)

u(y)

(r + |x|)n
dS(y) 6 u(x) 6

r2 − |x|2

nα(n)r

ˆ
∂B(0,r)

u(y)

(r − |x|)n
dS(y)

Where we’ve used that u(x) = r2−|x|2
nα(n)r

´
∂B(0,r)

u(y)
|y−x|n by Poisson’s for-

mula. Multiplying the left most and right most terms in the above

inequality by rn−2, we find:

(r − |x|)(r + |x|)rn−2

nα(n)rn−1(r + |x|)n

ˆ
∂B(0,r)

u(y)dS(y) 6 u(x) 6
(r − |x|)(r + |x|)rn−2

nα(n)rn−1(r − |x|)n

ˆ
∂B(0,r)

u(y)dS(y)

Which, by definition, becomes:

(r − |x|)rn−2

(r + |x|)n−1

 
∂B(0,r)

u(y)dS(y) 6 u(x) 6
(r + |x|)rn−2

(r − |x|)n−1

 
∂B(0,r)

u(y)dS(y)
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But u is harmonic, so by the mean value property,
ffl
∂B(0,r)

u(y) =

u(0). Using this, the above implies:

(r − |x|)rn−2

(r + |x|)n−1
u(0) 6 u(x) 6

(r + |x|)rn−2

(r − |x|)n−1
u(0)

As desired.

2. Chapter 2, Problem 8

Following this hint, we can see that since u ≡ 1 solves ∆u = 0 in

B(0, r) and u = 1 on ∂B(0, r), Poisson’s formula for the ball implies:

1 =

ˆ
∂B(0,r)

K(x, y)dy

Where K(x, y) denotes Poisson’s kernel. By definition, G(x, y) for

the ball is harmonic and smooth for x 6= y and hence given ε > 0, we can

find δ such that whenever |x− x0| < δ, |DαK(x, y)−DαK(x0, y)| < ε

for any order derivative. In particular, since ∂B(0, r) is compact we

see that Dαu(x) =
´
∂B(0,r)

Dα
xK(x, y)g(y)dy. Using this, let ε > 0, and

note that since g is continuous on a compact set it is bounded:

|Dαu(x)−Dαu(x0)| 6
ˆ
∂B(0,r)

|DαK(x, y)−DαK(x0, y)||g(y)|dy

< ε

ˆ
∂B(0,r)

|g(y)|dy

6 ε||g||L∞Sn → 0

(2.1)

Where Sn denotes the surface area of the n-sphere. Hence u is

smooth. Also, it is clear by the above that

∆u(x) =

ˆ
∂B(0,r)

∆xK(x, y)g(y)dy = 0
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So that u is indeed harmonic. Finally, we must show that u(x) =

g(x) on ∂B(0, r). Equivalently, this implies that lim
x→x0

u(x) = g(x0)

when x0 ∈ ∂B(0, r). By continuity of g, we can find δ for any ε > 0

such that |g(x) − g(x0)| < ε whenever |x − x0| < δ. First, note that´
∂B(0,r)

g(x0)K(x, y)dy = g(x0). Then we can split up our integral as´
∂B(0,r)

=
´
∂B(0,r)∩B(x0,δ)

+
´
∂B(0,r)\B(x0,δ)

. We have:

|u(x)− g(x0)| 6
ˆ
∂B(0,r)∩B(x0,δ)

K(x, y)|g(y)− g(x0)|dy

+

ˆ
∂B(0,r)\B(x0,δ)

K(x, y)|g(y)− g(x0)|dy

:= I + J

(2.2)

Then, firstly, since 1 =
´
∂B(0,r)

K(x, y)dy, in particular
´
U
K(x, y) <

1 for any U ⊂ B(0, r), so we immediately find that

I < ε

ˆ
∂B(0,r)∩B(x0,δ)

K(x, y)dy < ε

For J , we see that by the triangle inequality |y−x0| 6 |y−x|+|x−x0|

and |g(x) − g(x0) 6 2||g||L∞ . In particular, it is clear that for y /∈

B(x0, δ) and |x − x0| < δ/2, that |y − x0| 6 |y − x| + 1
2
|y − x0| =⇒

1
2
|y − x0| 6 |y − x|. Employing this in J :

ˆ
∂B(0,r)\B(x0,δ)

K(x, y)|g(y)− g(x0)|dy 6
2(r2 − |x|2)||g||L∞

nα(n)r

ˆ
∂B(0,r)\B(x0,δ)

|y − x0|−ndy

→ 0

(2.3)

Since |x| → r as x→ x0, as x0 ∈ ∂B(0, r). Then we are done, since

we see that |u(x) − g(x0)| → 0 as x → x0, so that this is indeed a

solution.
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3. Chapter 2, Problem 10

(a). Denoting by v for the odd reflection of u(x1, . . . , xn), when xn > 0,

u ≡ v so v is obviously C2 on the upper half. For xn < 0:

∂v

∂xi
= − ∂u

∂xi
i 6= n

∂v

∂xn
=

∂u

∂xn

Which are both continuous in the lower half sphere. Similarly,

∂2v

∂x2
i

= −∂
2u

∂x2
i

i 6= n

∂2v

∂x2
n

= −∂
2u

∂x2
n

Thus these derivatives are again continuous, since u ∈ C2(C2). Using

this, in the lower half sphere, we see that ∆v = −∆u = 0, so v is

harmonic in both the upper and lower half ball, and hence everywhere.

Also, we see that on the intersection of their respective boundaries,

v = u(x1, . . . , xn−1, 0) = 0.

(b). We can employ Poisson’s formula for the ball to find that

v(x) =

ˆ
∂B(0,1)

K(x, y)v(y)dS(y)

Where K(x, y) denotes Poisson’s kernel. We have shown that Pois-

son’s kernel is harmonic and that K(x, y) ∈ C2(B(0, 1)), and so we

find:

∂v(x)

∂xi
=

ˆ
∂B(0,1)

∂K(x, y)

∂xi
v(y)dS(y)
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And since we know that v(y) is continuous on ∂B(0, 1), we see that

the product ∂K(x,y)
∂xi

v(y) is continuous and hence so is the integral, so

that v(x) ∈ C1(U). Similarly, the second derivative is easy to calculate:

∂2v(x)

∂x2
i

=

ˆ
∂B(0,1)

∂2K(x, y)

∂x2
i

v(y)dS(y)

So that v ∈ C2(U). Finally, noting that K(x, y) is harmonic:

∆v(x) =

ˆ
∂B(0,1)

∆xK(x, y)v(y)dS(y) = 0

So that v is harmonic, and we are done.

4. Chapter 2, Problem 12

(a). Define uλ(x, t) := u(λx, λ2t). Then, we see:

∂uλ
∂t

= λ2∂u

∂t
(λx, λ2t)

∂2uλ
∂x2

i

= λ2∂
2u

∂x2
i

(λx, λ2t)

And hence summing over all i:

∂uλ
∂t
−∆uλ = λ2(ut −∆u) = 0

So that uλ also satisfies the heat equation.

(b). Take the partial with respect to λ:

∂uλ
∂λ

= x ·Du(λx, λ2x) + 2λt
∂u

∂t
(λx, λ2x)

However, by the above it is clear that v(x, t) = ∂uλ
∂t
|λ=0, v as de-

fined in the book. Using commutativity of mixed partial derivatives

(guaranteed by the smoothness of u):
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vt −∆v =
∂2

∂t∂λ
uλ −∆

∂

∂λ
uλ

=
∂

∂λ

(∂uλ
∂t
−∆uλ

)
= 0

(4.1)

Since ∂uλ
∂t
− ∆uλ = 0 by part (a). Hence we see that after setting

λ = 1, v satisfies the heat equation as well.

5. Chapter 2, Problem 14

Define v := ectu. Then, by the statement of the problem, we see that

v satisfies

vt −∆u = ectf

v = g

In Rn+1
+ and on ∂Rn+1

+ , respectively. Letting Φ(x, t) := 1
(4πt)n/2

e−|x|
2/4t

denote the heat kernel, we can solve for v:

v(x, t) =

ˆ
Rn

Φ(x− y, t)g(y)dy +

ˆ t

0

ˆ
Rn

Φ(x− y, t− s)f(y, s)dyds

And using the fact that v(x, t) := ectu(x, t), multiply the above by

e−ct to find:

u(x, t) =

ˆ
Rn

Φ(x−y, t)e−ctg(y)dy+

ˆ t

0

ˆ
Rn

Φ(x−y, t−s)e−ctf(y, s)dyds

And the above solves ut−∆u+ cu = f in Rn+1
+ and u = g on ∂Rn+1

+ ,

so we are done.
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6. Chapter 2, Problem 15

Define v(x, t) := u(x, t) − g(t). Then, it is clear that v satisfies

vt − vxx = −g′ in R+ × (0,∞), v(x, 0) = g(0) = 0, and v(0, t) = 0. We

now extend v by odd reflection, so that for x < 0, v(x, t) := −v(−x, t).

Then, this extends v to satisfy vt−vxx = −g′(t) when x > 0, vt−vxx− =

g′(t) for x < 0, and v(x, 0) = 0. Then, using Duhamel’s principle we

can immediately solve for v:

v(x, t) =

ˆ t

0

1

(4π(t− s))1/2

(
−
ˆ ∞

0

e
−(x−y)2
4(t−s) g′(s)dy+

ˆ 0

−∞
e
−(x−y)2
4(t−s) g′(s)dy

)
ds

Now, let us consider the term
´∞

0
e
−(x−y)2
4(t−s) g′(s)dy. We have:

ˆ ∞
0

e
−(x−y)2
4(t−s) g′(s)dy =

ˆ ∞
−∞

e
−(x−y)2
4(t−s) g′(s)dy −

ˆ 0

−∞
e
−(x−y)2
4(t−s) g′(s)dy

=

ˆ ∞
−∞

e
−x2

4(t−s) g′(s)dy −
ˆ 0

−∞
e
−(x−y)2
4(t−s) g′(s)dy

= g′(s)
(
4(t− s)

)1/2
Γ(1/2)−

ˆ 0

−∞
e
−(x−y)2
4(t−s) g′(s)dy

(6.1)

Plugging this back into our expression for v (and noting that Γ(1/2) =
√
π):

v(x, t) = −
ˆ t

0

g′(s)ds+ 2

ˆ t

0

1

(4π(t− s))1/2

ˆ 0

−∞
e
−(x−y)2
4(t−s) g′(s)dyds

Now, of course
´ t

0
g′(s) = g(t), so using the fact that v(x, t) =

u(x, t)− g(t), we have an expression for u(x, t):

u(x, t) = 2

ˆ t

0

1

(4π(t− s))1/2

ˆ 0

−∞
e
−(x−y)2
4(t−s) g′(s)dyds

We must now integrate by parts:
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ˆ t

0

1

(4π(t− s))1/2

ˆ 0

−∞
e
−(x−y)2
4(t−s) dydg(s) =

g(s)

(4π(t− s))1/2

ˆ 0

−∞
e
−(x−y)2
4(t−s) dy

∣∣∣t
0

−
ˆ t

0

g(s)

4
√
π(t− s)3/2

ˆ 0

−∞
e
−(x−y)2
4(t−s) dyds

+

ˆ t

0

g(s)

4
√
π(t− s)3/2

ˆ 0

−∞

(x− y)2e
−(x−y)2
4(t−s)

2(t− s)
dyds

:= I − J +K

(6.2)

We can integrate the term
´ 0

−∞
(x−y)2e

−(x−y)2
4(t−s)

2(t−s) dy by noticing that d
dy
e
−(x−y)2
4(t−s) =

(x−y)e
−(x−y)2
4(t−s)

2(t−s) . Then:

ˆ 0

−∞
(x− y)d

(
e
−(x−y)2
4(t−s)

)
=
[
(x− y)e

−(x−y)2
4(t−s)

]0

−∞

+

ˆ 0

−∞
e
−(x−y)2
4(t−s) dy

= xe
−x2

4(t−s) +

ˆ 0

−∞
e
−(x−y)2
4(t−s) dy

(6.3)

Plugging the above into the last term, K, of (6.2):

ˆ t

0

g(s)

4
√
π(t− s)3/2

ˆ 0

−∞

(x− y)2e
−(x−y)2
4(t−s)

2(t− s)
dyds = x

ˆ t

0

xe
−x2

4(t−s) g(s)

4
√
π(t− s)3/2

ds

+

ˆ t

0

g(s)

4
√
π(t− s)3/2

ˆ 0

−∞
e
−(x−y)2
4(t−s) dyds

(6.4)

But this shows that K = x
´ t

0
xe
−x2

4(t−s) g(s)

4
√
π(t−s)3/2 + J , and hence, using this

in (6.2):
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ˆ t

0

1

(4π(t− s))1/2

ˆ 0

−∞
e
−(x−y)2
4(t−s) g′(s)dyds = I + x

ˆ t

0

xe
−x2

4(t−s) g(s)

4
√
π(t− s)3/2

ds

(6.5)

We proceed to show that I = 0. Since g(0) = 0, it is obvious that

the term inside I evaluated at 0 is 0, since all other terms remain finite.

To find the inside of I evaluated at t, suppose that t− s < ε and then

let ε → 0+. Then, it is clear that e
−(x−y)2

4ε

ε1/2
→ 0 uniformly as ε → 0+,

x 6= y, and hence evaluating at t also yields 0, since the only point for

which it does not tend to 0 is a singleton and hence integrates to 0.

Thus, I = 0 and combining all of the above with this, we can finally

conclude, using our expression for u(x, t):

u(x, t) =
x√
4π

ˆ t

0

e
−x2

4(t−s) g(s)

(t− s)3/2
ds

7. Chapter 2, Problem 16

Defining uε := u− εt (ε > 0), we see that uεt −∆uε = −ε < 0. This

shows that uε cannot attain a maximum on the interior of UT , since

if this were the case, we would see that uεt > 0 (since locally, u must

be increasing) and ∆uε 6 0 (locally convex) for some (x0, t0) ∈ UT .

But this would then force uεt − ∆uε > 0. Hence, uε cannot attain is

maximum on the interior.

Now, denote by Mε the maximum of uε on the boundary ΓT , and

M := max
UT

u. By our definition, we certainly have that uε 6 u. Suppose

now for sake of contradiction that u attains its maximum on the interior

of UT . Then, M − εt 6Mε, since else uε would attain its maximum on

the interior as well. Hence we have the following chain of inequalities:
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M − εt 6Mε 6M

Letting ε → 0, we see that M0 = M . But M0 = max
ΓT

u, hence we

conclude:

max
UT

u = max
ΓT

u

Contradicting the fact that u attains its maximum on the interior.

Hence the assertion follows.

8. Chapter 2, Problem 17

(a). Let E(r) := E(0, 0; r), where u is a subsolution of the heat equa-

tion. Without loss of generality, we can assume (x, t) = (0, 0). Then,

define ψ(y, s) := −n
2

log(−4πs) + |y|2
4s

+ n log(r), where s 6 0, and note

that ψ restricted to ∂E(r)\(0, 0) vanishes. Define:

φ(r) :=
1

rn

¨
E(r)

u(y, s)
|y|2

s2
dyds

=

¨
E(1)

u(ry, r2s)
|y|2

s2
dyds

(8.1)

The second equality comes from the natural change of variable y 7→

ry, s 7→ r2s. Now we can differentiate φ with respect to r:

φ′(r) =

¨
E(1)

Du · y |y|
2

s2
+ 2rus

|y|2

s2
dyds

=
1

rn+1

¨
E(r)

Du · y |y|
2

s2
+ 2us

|y|2

s2
dyds

:= I + J

(8.2)

Now we want to consider the term J . Note that |y|2/s2 = 2Dψ · y,

where ψ defined above. Using this,
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J =
1

rn+1

¨
E(r)

4usDψ · ydyds

Now integrate by parts with respect to y, and note that our boundary

term vanishes. Then, D(usy) = Dus · y +Dy · us. But Dy is merely a

vector of 1’s, and hence Dy · u = nus. Using this,

1

rn+1

¨
E(r)

4usDψ · ydyds = − 1

rn+1

¨
E(r)

4ψDus · y + 4nusψdyds

(8.3)

Now integrate the first term by parts with respect to s. Then, ψs =

− n
2s
− |y|

2

4s2
. Using this:

− 1

rn+1

¨
E(r)

4ψDus · y + 4nusψdyds = − 1

rn+1

¨
E(r)

−4ψsDu · y + 4nusψdyds

= − 1

rn+1

¨
E(r)

2n

s
Du · y +

|y|2

s2
Du · y + 4nusψdyds

= − 1

rn+1

¨
E(r)

2n

s
Du · y + 4nusψdyds− I

(8.4)

Combining this with our expression for φ′(r):

φ′(r) = − 1

rn+1

¨
E(r)

2n

s
Du · y + 4nusψdyds

But u is a subsolution. Hence, us 6 ∆u. We want to integrate this

by parts:

− 1

rn+1

¨
E(r)

2n

s
Du · y + 4nusψdyds > −

1

rn+1

¨
E(r)

2n

s
Du · y + 4n∆uψdyds

=
1

rn+1

¨
E(r)

−2n

s
Du · y + 4nDu ·Dψdyds

(8.5)

Noting the form of ψ, we see that Dψ = y
2s

. Hence:
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1

rn+1

¨
E(r)

−2n

s
Du·y+4nDu·Dψdyds =

1

rn+1

¨
E(r)

Du·
(
−2n

s
y+4n

y

2s

)
dyds = 0

Combining this with the above, we find that φ′(r) > 0, so that φ

is an increasing function. This means that it attains its minimum as

r → 0.

lim
r→0

φ(r) = lim
r→0

1

rn

¨
E(r)

u(y, s)
|y|2

s2
dyds

= lim
r→0

¨
E(1)

u(ry, r2s)
|y|2

s2
dyds

= u(0, 0)

¨
E(1)

|y|2

s2
dyds

(8.6)

Our task is to compute
˜
E(1)

|y|2
s2
dyds. Recall that

E(1) = {(y, s) : s 6 0,
e−
|y|2
4s

(−4πs)n/2
> 1}

Then, by basic manipulations we see that |y|2 6 2ns log(−4πs) in

E(1). Also, since |y|2 > 0, we see that s > − 1
4π

. Hence,

¨
E(1)

|y|2

s2
dyds =

ˆ 0

−1/4π

1

s2

ˆ
|y|262ns log(−4πs)

|y|2dyds

Converting to spherical coordinates, |y| 7→ r:

ˆ 0

−1/4π

1

s2

ˆ
|y|262ns log(−4πs)

|y|2dyds =
2πn/2

Γ(n/2)

ˆ 0

−1/4π

1

s2

ˆ (2ns log(−4πs))1/2

0

rn+1drds

=
2πn/2

(n+ 2)Γ(n/2)

ˆ 0

−1/4π

(2ns log(−4πs))n/2+1s−2ds

=
2 · (2n)n/2+1πn/2

(n+ 2)Γ(n/2)

ˆ 1/4π

0

sn/2−1
(

log
( 1

4πs

))n/2+1

ds

(8.7)
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Now make the change of variable u = log
(

1
4πs

)
. Our bounds will

change as
´ 1/4π

0
→

´ 0

∞:

2 · (2n)n/2+1πn/2

(n+ 2)Γ(n/2)

ˆ 1/4π

0

sn/2−1
(

log
( 1

4πs

))n/2+1

ds

=
2 · (2n)n/2+1πn/2

(n+ 2)Γ(n/2)(4π)n/2

ˆ ∞
0

(e−nu/2)un/2+1du

=
2 · (2n)n/2+1πn/2

(n+ 2)Γ(n/2)(4π)n/2

( 2

n

)n/2+2
ˆ ∞

0

e−ttn/2+1dt

=
2 · (2n)n/2+1πn/2

(n+ 2)Γ(n/2)(4π)n/2

( 2

n

)n/2+2

Γ(n/2 + 2)

=
(2n)n/2+1

(n/2 + 1)Γ(n/2)4n/2

( 2

n

)n/2+2

(n/2 + 1)Γ(n/2 + 1)

=
(2n)n/2+1

Γ(n/2)2n

( 2

n

)n/2+2

(n/2)Γ(n/2)

=
2n/2+1nn/2+1

2n
2n/2+2

nn/2+2
(n/2)

=
2n+2

2n
= 22 = 4

(8.8)

And hence we see limr→0 φ(r) = 4u(0, 0). Since (0, 0) can be trans-

lated to any general coordinate (x, t), we conclude:

u(x, t) 6
1

4rn

¨
E(x,t;r)

u(y, s)
|x− y|2

(t− s)2
dyds

As asserted, and we are done.

(b). Suppose u attains its maximum at the point (x0, t0). Then, by

part a, whenever 0 < r < dist((x, t), ∂UT ):

M = u(x0, t0) 6
1

4rn

¨
E(x0,t0;r)

u(y, s)
|x− y|2

(t− s)2
dyds 6M

1

4rn

¨
E(r)

|x− y|2

(t− s)2
dyds

By the work of part (a), it is seen that 1
4rn

˜
E(x0,t0;r)

|x−y|2
(t−s)2 dyds = 1

by a simple change of variable. We then conclude that u(x, t) = M
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for all (x, t) ∈ E(x0, t0; r). However, the set {(x, t) : u(x, t) = M} is a

closed set and the above shows that it is also an open set. Since UT is

connected, the only clopen subset of UT is the entire set itself. Then,

u(x, t) = M for all (x, t), implying u is constant.

Then, if we assumed that u were not constant and attained its max-

imum on the interior, we can apply the above argument to see that u

attains its maximum in some heat ball contained in UT . But this forces

u to be constant, a contradiction. Hence, u attains its maximum on

the boundary, and:

max
UT

u = max
ΓT

u

As asserted.

(c). Define v := φ(u), where φ is smooth and convex, implying φ′′ > 0.

Then, we compute:

∂

∂xi
φ(u) =

∂φ

∂u

∂u

∂xi

∂

∂xi

∂φ

∂u

∂u

∂xi
=
∂2φ

∂u2

( ∂u
∂xi

)2

+
∂φ

∂u

∂2u

∂x2
i

Summing over i, ∆v =
∑

i
∂2φ
∂u2

(
∂u
∂xi

)2

+ ∂φ
∂u

∆u. Also, vt = ∂φ
∂u

∂u
∂t

.

Putting this all together:

vt −∆v =
∂φ

∂u

∂u

∂t
−
∑
i

∂2φ

∂u2

( ∂u
∂xi

)2

− ∂φ

∂u
∆u

=
∂φ

∂u

(
ut −∆u

)
−
∑
i

∂2φ

∂u2

( ∂u
∂xi

)2

= −
∑
i

∂2φ

∂u2

( ∂u
∂xi

)2

6 0

(8.9)
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Where the last step uses convexity of φ. Then we see that this is

indeed a subsolution.

(d). Define v := |Du|2 + u2
t , where ut solves the heat equation. Then,

we first calculate:

∂

∂xi
|Du|2 = 2Du ·Duxi

∂

∂xi
2Du ·Duxi = 2|Duxi |2 + 2Du ·Duxixi

And hence, from the above, ∆|Du|2 = 2
∑

i |Duxixi |2 +2Du ·D(∆u).

Likewise, it is obvious that ∂
∂t
|Du|2 = 2Du ·Dut. We also see:

∂

∂xi
u2
t = 2ututxi

∂

∂xi
2ututxi = 2u2

txi
+ 2ututxixi

And similarly, summing over i, ∆u2
t = 2

∑
i u

2
txi

+ 2ut(∆u)t. Also,

∂
∂t
u2
t = 2ututt. Using all of the above:

vt −∆v = 2Du ·Dut + 2ututt − 2
∑
i

|Duxixi |2 − 2Du ·D(∆u)− 2
∑
i

u2
txi
− 2ut(∆u)t

= 2Du ·D(ut −∆u) + 2ut(ut −∆u)t − 2
∑
i

(
|Duxixi |2 + u2

txi

)
= −2

∑
i

(
|Duxixi |2 + u2

txi

)
6 0

So we conclude that v is indeed a subsolution as asserted.

9. Chapter 2, Problem 18

Suppose that utt − ∆u = 0 in Rn × (0,∞), with u(x, 0) = 0 and

ut(x, 0) = h. Then, set v := ut.
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It is clear that vtt −∆v = (utt −∆u)t = 0 in Rn × (0,∞). Similarly,

v(x, 0) = ut(x, 0) = h.

Finally, vt(x, 0) = utt(x, 0) = ∆u(x, 0). But u(x, 0) = 0, and hence

∆u(x, 0) = 0, so that vt(x, 0) = 0, as desired.

10. Chapter 2, Problem 19

(a). Suppose uxy = 0. Then, certainly ux = f(x), where f is any

function. Integrating again, we see that u(x, y) =
´ x
x0
f(x)dx + g(y).

Redefining our functions, we conclude that u(x, y) = F (x) + G(y) for

arbitrary functions F and G.

(b). Set ξ = x + t and η = x − t. Then, for u(ξ, η), employ the chain

rule to find:

ut(ξ, η) = uξ − uη

utt(ξ, η) = uξξ − 2uξη + uηη

Similarly,

ux(ξ, η) = uξ + uη

uxx(ξ, η) = uξξ + 2uξη + uηη

Assuming first that utt − uxx = 0, subtracting the above becomes

−4uξη = 0, so uξη = 0. Conversely, if uξη = 0, then, noting that

x = η/2 + ξ/2 and t = ξ/2− η/2:

uξ = ux/2 + ut/2

uξη = uxx/4− utt/4

And hence utt − uxx = 0.
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(c). Using the previous two parts, we can immediately deduce that if

utt − uxx = 0, then u = F (x + t) + G(x − t) for some functions F ,

G. Suppose that u(x, 0) = g, ut(x, 0) = h. Then, this implies that

g(x) = F (x) + G(x) and h(x) = F ′(x) − G′(x). Solving for F and G,

we find:

F ′(x) =
1

2

(
g′(x) + h(x)

)
G′(x) =

1

2

(
g′(x)− h(x)

)
And hence, after integrating we find:

u(x, t) =
1

2

(ˆ x+t

0

g′(y) + h(y)dy +

ˆ x−t

0

g′(y)− h(y)dy
)

=
1

2

(
g(x+ t) + g(x− t)

)
+

1

2

(ˆ x+t

0

h(y)dy −
ˆ x−t

0

h(y)dy
)

=
1

2

(
g(x+ t) + g(x− t)

)
+

1

2

ˆ x+t

x−t
h(y)dy

(10.1)

Which is precisely D’Alembert’s solution, so we are done.

(d). Suppose first that u is a left moving wave. In particular, this

means that ux +ut = 0, where u(x, 0) = g(x). Then, this is merely the

solution to the transport equation, so u(x, t) = g(x− t). Using this, we

also know that ut(x, 0) = h(x). But ut = −g′(x − t) =⇒ ut(x, 0) =

−g′(x). Then, we see that h(x) = −g′(x).

Similarly, if we have that u is a right moving wave, u satisfies ut −

ux = 0, with u(x, 0) = g(x). Again, using the solution to the transport

equation, u(x, t) = g(x + t). This then shows that ut = g′(x + t) and

hence g′(x) = h(x), and these are the conditions for the solution being

a left and right moving wave.
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11. Chapter 2, Problem 24

(a). Suppose u solves the wave equation in R × (0,∞). Then, with

k(t) := 1
2

´∞
−∞ u

2
t (x, t)dx and p(t) = 1

2

´∞
−∞ u

2
x(x, t)dx. Then, u can of

course be solved using D’Alembert’s solution. Firstly, however, note:

d

dt
k(t) =

ˆ ∞
−∞

ututtdx

d

dt
p(t) =

ˆ ∞
−∞

uxuxtdx

Recalling that utt = uxx, we can now integrate the expression
´∞
−∞ ututtdx =´∞

−∞ utuxxdx by parts.

ˆ ∞
−∞

utuxxdx = utux
∣∣∞
−∞ −

ˆ ∞
−∞

uxuxtdx

Since g and h have compact support and noticing the form of D’Alembert’s

solution, this immediately implies that utux
∣∣∞
−∞ = 0. Then,

d

dt
k(t) +

d

dt
p(t) = −

ˆ ∞
−∞

uxuxtdx+

ˆ ∞
−∞

uxuxtdx = 0

And hence k(t) + p(t) is a constant with respect to t.

(b). Using parts (a) and (b) of the previous problem, we know that

u(x, t) = F (x + t) + G(x − t) for some functions F , G. Noting the

dependence on our initial conditions for D’Alembert’s solution, we can

also conclude immediately that F and G must have compact support.

Now, it is simple to see:

ut = F ′(x+ t)−G′(x− t)

ux = F ′(x+ t) +G′(x− t)

And hence:
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ˆ ∞
−∞

u2
t − u2

xdx = −4

ˆ ∞
−∞

F ′(x+ t)G′(x− t)dx

But for any compactly supported function, its derivative must also

be compactly supported. Suppose that the support of both of these is

contained in the interval [−M,M ] for sufficiently large M . Then for

any x, it is never possible for x−2M and x+2M to both be contained

in [−M,M ], since else the length of this interval would be at least 4M .

In other words, for t > 2M , either G′(x− t) or F ′(x+ t) must vanish,

implying that

k(t) = p(t)

For sufficiently large t.


