ADVANCED PARTIAL DIFFERENTIAL EQUATIONS:
HOMEWORK 3

KELLER VANDEBOGERT

1. CHAPTER 2, PROBLEM 7

We have by the triangle inequality |y| — |z| < |y — x| < |y| +|z|. For
y € 0B(0,r), ly| = r, so that
1 < 1 < 1
(r+lehm =y —af* = (r = fa])"

On 0B(0,r). Suppose now that u is harmonic, and in particular sat-

isfies the mean value property. Using the above and Poisson’s formula

for the ball:

nalm)r /an,r) G e OW) S ule) S SEnsy /aBm,r) W

Where we've used that u(z) = % fBB(O " % by Poisson’s for-

mula. Multiplying the left most and right most terms in the above

inequality by 7"~2, we find:

(r = [2))(r + |=[)r"~2 (r — |z|)(r + |z|)r"2
()1 (r £ |2])" /6 o, u(y)dS(y) < u(z) < ey — [l /8 son u(y)dS(y)

Which, by definition, becomes:
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But w is harmonic, so by the mean value property, f@B(O " u(y) =

u(0). Using this, the above implies:

(r = fal)r
(r Jel
As desired.

(r+ |y
U(O) < U’(I) < (7" - |$|)n—1 (0)

2. CHAPTER 2, PROBLEM &

Following this hint, we can see that since u = 1 solves Au = 0 in

B(0,7) and v =1 on 0B(0,r), Poisson’s formula for the ball implies:

1= / K(z,y)dy
0B(0,r)

Where K (z,y) denotes Poisson’s kernel. By definition, G(z,y) for
the ball is harmonic and smooth for x # y and hence given € > 0, we can
find § such that whenever |z — zo| < 0, |D*K(z,y) — D*K (z9,y)| < €
for any order derivative. In particular, since 9B(0,r) is compact we
see that D*u(z) = ng(O’T) D2K (z,y)g(y)dy. Using this, let € > 0, and

note that since ¢ is continuous on a compact set it is bounded:

(2.1)
ID*u(z) — D*u(ro)| < / DK (2, y) — DK (z0,)|l9()\dy
dB(0,r)

< / 9()ldy
aB(0,r)

< e€llgllz=Sn, — 0

Where S,, denotes the surface area of the n-sphere. Hence u is

smooth. Also, it is clear by the above that

Au(z) = /83(0 )Aa;K(% y)g(y)dy =0
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So that u is indeed harmonic. Finally, we must show that u(x) =
g(xz) on 0B(0,r). Equivalently, this implies that xli}rgou(:v) = g(zo)
when zy € 0B(0,r). By continuity of g, we can find ¢ for any € > 0
such that |g(z) — g(zo)| < € whenever |x — z¢| < §. First, note that

faB(O,r) g(xo)K(x,y)dy = g(x). Then we can split up our integral as

() — glao)]| < / K(x,9)lg(y) — 9(z0)|dy
0B(0,r)NB(z0,5)

2.2
(2.2) n / K(x,y)|g(y) — glwo)|dy
0B(0,r)\B(x0,9)

=1+J
Then, firstly, since 1 = faB(o " K(z,y)dy, in particular [, K(x,y) <
1 for any U C B(0,r), so we immediately find that

]<6/ K(z,y)dy < e
0B(0,r)NB(x0,5)

For J, we see that by the triangle inequality |y—xo| < |[y—z|+|z—x0|
and |g(z) — g(xo) < 2||g||r~. In particular, it is clear that for y ¢
B(wg,6) and |z — x| < §/2, that |y — zo| < |y — 2| + 3|y — 20| =

|y — o] < |y — z|. Employing this in J:

(2.3)

2(r? — |z|? 9| .
/ KGe.loto) — g(ao)lay < X= 2ol [ 1y — zol " dy
dB(0,r)\ B(x0,5) na(n)r dB(0,r)\ B(z0,5)

—0

Since |x| — 1 as @ — g, as g € OB(0,7). Then we are done, since
we see that |u(z) — g(zo)] — 0 as @ — zp, so that this is indeed a

solution.
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3. CHAPTER 2, PROBLEM 10

(a). Denoting by v for the odd reflection of u(z1, ..., x,), when z, > 0,

u = v so v is obviously C? on the upper half. For z,, < 0:

ov ou .
0a:i N —01'1 ! 7& "
dv  Ou
ox, Ox,

Which are both continuous in the lower half sphere. Similarly,

0*v Pu
o~ o 7"

(2 (2

0%*v 9%u

0x2  Oa?

Thus these derivatives are again continuous, since v € C?(C?2). Using
this, in the lower half sphere, we see that Av = —Au = 0, so v is
harmonic in both the upper and lower half ball, and hence everywhere.
Also, we see that on the intersection of their respective boundaries,

v=u(xy,...,x,-1,0) =0.

(b). We can employ Poisson’s formula for the ball to find that

o(z) = / oy K0S ()

Where K (z,y) denotes Poisson’s kernel. We have shown that Pois-
son’s kernel is harmonic and that K(z,y) € C?(B(0,1)), and so we
find:
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And since we know that v(y) is continuous on 0B(0,1), we see that
the product ( y) v(y) is continuous and hence so is the integral, so

that v(z) € C 1(U ). Similarly, the second derivative is easy to calculate:

0%v(x) B PK(z,y)
o2 /63(071) Tv(y)dS(y)

(2 K3

So that v € C?(U). Finally, noting that K (x,%) is harmonic:

Av(z) = / Az K (z,y)o(y)dS(y) =
dB(0,1)

So that v is harmonic, and we are done.

4. CHAPTER 2, PROBLEM 12

(a). Define uy(z,t) := u(Ax, \*t). Then, we see:

8uA 2871, 2

S = N (e, %)
82’&)\ o 282u 2
57 = N (A \%)

3 3

And hence summing over all i:

—= — Auy = N (u, — Au) =0

So that u, also satisfies the heat equation.

(b). Take the partial with respect to A:

0 0
a“; — 2 Du(\z, \2x )+2)\ta—1;()\x,)\2x)
However, by the above it is clear that v(z,t) = %b\zo, v as de-
fined in the book. Using commutativity of mixed partial derivatives

(guaranteed by the smoothness of u):
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02 0
A = ——— s — A—
(4.1) TR T o™ T S ™
| _9 (% ~ Au) =0
o\ ot o
Since 88%* — Auy = 0 by part (a). Hence we see that after setting

A = 1, v satisfies the heat equation as well.

5. CHAPTER 2, PROBLEM 14

Define v := eu. Then, by the statement of the problem, we see that

v satisfies

v — Au=e"f
v=yg
In R and on OR’ ™| respectively. Letting ®(z,t) := We"xw‘”

denote the heat kernel, we can solve for v:

v(z,t) = / O(z —y,t)g(y)dy + /0 / O(z —y,t —s)f(y,s)dyds

And using the fact that v(z,t) := e“u(x,t), multiply the above by
e~ to find:

u(z,t) = /n @(ac—y,t)e_dg(y)dy—i-/o /n O(x—y,t—s)e " f(y, s)dyds

And the above solves u; — Au+cu = f in R and u = g on 9R’ ™,

so we are done.
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6. CHAPTER 2, PROBLEM 15

Define v(z,t) := u(x,t) — g(t). Then, it is clear that v satisfies
Ut — Vg = —¢' In Ry % (0, 00), v(x,0) = ¢g(0) =0, and v(0,¢) = 0. We
now extend v by odd reflection, so that for = < 0, v(x,t) = —v(—z,1).
Then, this extends v to satisfy v;—v,, = —¢'(t) when x > 0, v;— v, — =
g'(t) for z < 0, and v(z,0) = 0. Then, using Duhamel’s principle we

can immediately solve for v:

. _/t 1 < /00 74((,2 1,;2 ( )d +/0 74((3;7 ;2 ( )d >d
’U(J}, )_ 0 (47T(t—5))1/2 0 g y € g y S

—00

o —lz=y)?
Now, let us consider the term [~ e G g'(s)dy. We have:
(6.1)

© _@-y)? —@=y)? 0 _@?
e Alt—s) g e TA(t—s) g dy e 4t— T4(t—s) g( )dy
0 —00

0 2
—(z—y)
6“”9 )dy — / e 1 g (s)dy

[e. 9]

0 2

—(z—y)

_ g’(s)(4(t—s))1/2f(1/2) - / e g (s)dy

—00

Plugging this back into our expression for v (and noting that I'(1/2) =

VT):

L t 1 0 _@_y?
_— ds+2 [ — st gl (s)dyd
o(z,1) /Og<s> St /O(M(t_s))lﬂ/_we o (s)dyds

Now, of course f(f g'(s) = g(t), so using the fact that v(z,t) =

u(x,t) — g(t), we have an expression for u(x,t):

t 1 0 —(z—y)? )2
t)=2 e — GO dyd
wat) =2 [ s [ s

We must now integrate by parts:
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(6.2)
t ! Lt 9(s) O -Gy
/Ow/e T dydg(s) = W/e()dy

t 0 )2
9(s) / L
J— - = -z t—s d d
/0 1/t — s | v

—(z—y)?
t 0 _ 2 4(t—s)
+/ 9(s) 3 2/ (z—y)e dyds
o ATt —sp2 ) T 2t—s)

t

=1—-J+K
—(z—y)?
. 0 (x—y)2 TA(t—s) —(z—y)? o
We can integrate the term f_oo 5= dy by noticing that —e At =
—(2—y)?
(z—y)e 49

DR Then:

/0 (517 - y)d(eiéi‘f) — [(x . y)eiézf}(ioo

- 0 —(a—)? )2
(6.3) +/ e 1= dy
g2 0 @2
— pedli-s) —|-/ e =9 dy

Plugging the above into the last term, K, of (6.2):

(6.4)
—y)?

—(z —22
t 0 _ 2,7 4(t=s) t It—s)
[t [ [ e,
o Wt — o | alt—s) o L/t = s
t 0 2
9(s) / e
e 4(t—s d d
+/0 it —spz ) © yas
22

But this shows that K = ft f;:(tt l 572 +J, and hence, using this
n (6.2):
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(6.5)

2

! 1 0 —y? b reT=Ig(s)
- A(t—s) duyds = [ — 2’ d
/0(47T(t—8))1/2/_00 g'(s)dyds —I—JJ/O 4 /7t — 5)3/2 S

We proceed to show that I = 0. Since g(0) = 0, it is obvious that

the term inside I evaluated at 0 is 0, since all other terms remain finite.

To find the inside of I evaluated at t, suppose that t — s < € and then
—e-w?

let ¢ — 0F. Then, it is clear that “— 75— — 0 uniformly as e — 07,

x # y, and hence evaluating at ¢ also yields 0, since the only point for
which it does not tend to 0 is a singleton and hence integrates to 0.
Thus, I = 0 and combining all of the above with this, we can finally

conclude, using our expression for u(z,t):

64(t s) g

\/471'/ t—SS/QdS

u(z,t) =

7. CHAPTER 2, PROBLEM 16

Defining u, := u — et (¢ > 0), we see that uy — Au, = —e < 0. This
shows that u, cannot attain a maximum on the interior of Ur, since
if this were the case, we would see that u. > 0 (since locally, u must
be increasing) and Au, < 0 (locally convex) for some (zg,ty) € Ur.
But this would then force u, — Au, > 0. Hence, u, cannot attain is
maximum on the interior.

Now, denote by M, the maximum of u, on the boundary I'y, and
M := maxu. By our definition, we certainly have that u. < u. Suppose
now forUsTake of contradiction that u attains its maximum on the interior

of Ur. Then, M — et < M., since else u, would attain its maximum on

the interior as well. Hence we have the following chain of inequalities:
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M—e<M<M

Letting ¢ — 0, we see that My = M. But My, = max u, hence we
T

conclude:

max u = max u
UT I‘lT
Contradicting the fact that u attains its maximum on the interior.

Hence the assertion follows.

8. CHAPTER 2, PROBLEM 17

(a). Let E(r) := E(0,0;r), where u is a subsolution of the heat equa-
tion. Without loss of generality, we can assume (x,t) = (0,0). Then,
define ¥ (y, s) := —5 log(—4ms) + % + nlog(r), where s < 0, and note
that ¢ restricted to OE(r)\(0,0) vanishes. Define:

(8.1)

The second equality comes from the natural change of variable y —

ry, s — r?s. Now we can differentiate ¢ with respect to r:

2 2
T _// Du |y| +2msly| dyds

(8.2) _ lyl? lyl?
= Tn+1 o Du - Ve + 2u5?dyds
=14+J

Now we want to consider the term J. Note that |y|?/s? = 2D -y,

where ¢ defined above. Using this,
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1
e

Now integrate by parts with respect to y, and note that our boundary

term vanishes. Then, D(usy) = Dus -y + Dy - us. But Dy is merely a

vector of 1’s, and hence Dy - u = nug. Using this,

(8.3)

1 1
// bu, Do) - ydyds — — // ) D, - y + dnugbdyds
W) i Wee)
Now integrate the first term by parts with respect to s. Then, ¢, =

_n _ WP ' is:
5 — 1,2 Using this:

(8.4)
1
g // 4pDug - y + dnugpdyds = _rn+1 // —41psDu - y + 4nuspdyds
E(r)
_ Iyl2
= . =~ Du -y + 4dnuspdyds
7“”Jrl T) S
= — // —Du y + dnugpdyds — 1
7’” E(r) S

Combining this with our expression for ¢/'(r

= = // —Du y + dnugpdyds
Tn E(r)

But u is a subsolution. Hence, u, < Au. We want to integrate this

by parts:

// —Du y + dnugpdyds > —Du y + dnAupdyds
rn—i—l E(r) E(r) S

= // ——Du y + 4nDu - Dydyds
E(r)

Tn—i—l s

Noting the form of 1, we see that Dy = 3-. Hence:
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1 2 1 2
// ——nDu-y+4nDu-D1/)dyds = / Du-(——ny+4n£)dyds =0

Combining this with the above, we find that ¢'(r) > 0, so that ¢
is an increasing function. This means that it attains its minimum as

r — 0.

(& 4s

E(1) ={(y,s): s <0, WEH

Then, by basic manipulations we see that |y|> < 2nslog(—4ms) in

E(1). Also, since |y[* > 0, we see that s > —-. Hence,

2 0 1
// %dyds:/ —2/ ly|2dyds
E(1) S —1/47 57 J|y|2<2nslog(—4ns)

Converting to spherical coordinates, |y| — r:

(8.7)
1/2

0 n/2 (2nslog(—4ms))
1 2
/ —2/ ly|>dyds = T / / r"drds
—1/47 57 J|y|2<2nslog(—4ns) 1/4m S

27Tn/2

] m/_%@nsloa )5 s

Ars

_ 2. <2n)n/2+1ﬂ_n/2 /1/47r . 1(1og( 1 )>n/2+1d
0

(n+2)I'(n/2)

S
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Now make the change of variable u = log (ﬁ) Our bounds will

change as f01/47r — f;:

2 (2n)"/2Hign/2 /”4" 271 (log (1 L ))”mld
(n+2)T(n/2) J, & s °

2.(2 n/241.n/2 00
— ( n) 7T / (e—nu/Q)un/Q—‘rldu
(n4—2)(ﬂ/2ﬂ4ﬂyﬂ2 0
_ 2 (2 n)"/2+17Tn/2 <z>n/2+2 /oo g
(n4—2ﬂxﬂ/2ﬂ4ﬂy”2 n 0
n/2+17.(.n/2

__2-(2n) 2\ n/2+2
(8.8) ~ (n+2)T(n/2)(4m)n/2 (ﬁ) [(n/2+2)
( n)n/2+1

~ (/2 + L(n/2)477 (%)WHQ(”/Q T DEn/2+1)

n n/2+ n/2+2
— ) e

2n/2+1nn/2+1 2n/2+2

- on nn/2+2 (n/2)

2n
And hence we see lim,_,q ¢(r) = 4u(0,0). Since (0,0) can be trans-

lated to any general coordinate (z,t), we conclude:

1 // |z —y|”
u(x,t) < — u(y, s dyds
( ) 4rn E(z,t;r) ( ) (t - 5>2

As asserted, and we are done.

(b). Suppose u attains its maximum at the point (zg,%y). Then, by
part a, whenever 0 < r < dist((z,t), 0Ur):

1 !—yP W—yP
M = u(zg, ty) < — // u(y, s) <M— // S dyds
Ar™ JJ (2o toir) (t — ) 4rn (t —s)?

By the work of part (a), it is seen that W etotom ¢ |x y‘ Y dyds = 1

by a simple change of variable. We then conclude that u(x,t) =M
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for all (z,t) € E(xo,to;r). However, the set {(z,t) : u(z,t) = M} is a
closed set and the above shows that it is also an open set. Since Ur is
connected, the only clopen subset of Ur is the entire set itself. Then,
u(x,t) = M for all (x,t), implying u is constant.

Then, if we assumed that u were not constant and attained its max-
imum on the interior, we can apply the above argument to see that u
attains its maximum in some heat ball contained in Ur. But this forces
u to be constant, a contradiction. Hence, u attains its maximum on

the boundary, and:

maxu = maxu
Ur I'r

As asserted.

(c). Define v := ¢(u), where ¢ is smooth and convex, implying ¢” > 0.

Then, we compute:

B  0¢ du

0.000u _90(duyr 900
Ox; Oudx;  Ou? \dx; du Oz?

2
Summing over i, Av = > 82—¢(@> + %Au. Also, v, = 2294,

i Ou? \ Ox;

Putting this all together:

06 Ou 0% [ OuN? 90
n = S Y et (o) e
00 0% 1 Dun?
9) = (= 20) =355 (55)

7
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Where the last step uses convexity of ¢. Then we see that this is

indeed a subsolution.

(d). Define v := |Du|? + u?, where u; solves the heat equation. Then,

we first calculate:

0
(9.7:1-

|Du|? = 2Du - Duy,

0
5 2Du - Du,, = 2|Dug,|* +2Du - Dug,,,
x;

And hence, from the above, A|Du|* = 23", |Duy,,,|* +2Du- D(Auw).

Likewise, it is obvious that 2|Du|?> = 2Du - Du;. We also see:

0
0@-

2
Uy = 2UpUsy,

2
Uy, = 2uy,, + 2UuT; T

(91:1-
And similarly, summing over i, Auf = 23, uf, + 2u(Au),. Also,

%u? = 2usuy. Using all of the above:

vy — Av = 2Du - Duy + 2upuy — 2 Z | Dy, 2_9Du- D(Au) — 2 Z u?xl — 2u(Au),

= 2Du - D(u; — Au) + 2uy(uy — Au)y — 2 Z <|Duggixi|2 + ufxl>

= _22 (|Dua¢¢x¢’2 + u?xl) <0

So we conclude that v is indeed a subsolution as asserted.

9. CHAPTER 2, PROBLEM 18

Suppose that u; — Au = 0 in R™ x (0,00), with u(z,0) = 0 and
ut(z,0) = h. Then, set v := ;.
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It is clear that vy — Av = (uy — Au); = 0 in R”™ x (0, 00). Similarly,
v(x,0) = u(z,0) = h.

Finally, v(z,0) = u(x,0) = Au(z,0). But u(z,0) = 0, and hence
Au(z,0) =0, so that v,(x,0) = 0, as desired.

10. CHAPTER 2, PROBLEM 19

(a). Suppose u,, = 0. Then, certainly u, = f(z), where f is any
function. Integrating again, we see that u(z,y) = f; f(z)dz + g(y).
Redefining our functions, we conclude that u(z,y) = F(z) + G(y) for

arbitrary functions F' and G.

(b). Set £ =z +t and n = x — t. Then, for u(§,n), employ the chain
rule to find:

ut(é-a 77) - Ug - un
ug(§,m) = Uge — 2Ugy + Uy

Similarly,

ux(ga T]) = Ug + U“??
Uz (§,1) = Uge + 2ugy + Uy
Assuming first that uy — u,, = 0, subtracting the above becomes

—4ugy, = 0, so ug, = 0. Conversely, if ug, = 0, then, noting that
r=n/2+&/2and t =&/2 —n/2:

Ue = Uy /2 + uy /2
Ugy = Um$/4 — utt/4

And hence uy — gz, = 0.
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(c). Using the previous two parts, we can immediately deduce that if
Uy — Uy = 0, then u = F(x +t) + G(xz — t) for some functions F,
G. Suppose that u(x,0) = g, ui(x,0) = h. Then, this implies that
g(x) = F(x) + G(x) and h(z) = F'(z) — G'(x). Solving for F' and G,

we find:

F/x) = () + h(x)
¢(2) = 5 (/(x) — h(w))

And hence, after integrating we find:

(10.1)

u(z,t) =

(/DM 9'(y) + h(y)dy + /:t 9'(y) — h(y)dy>
(ste+0+ote—0) +5( [ nttn— [ nispan)

= (oot —0)+5 [ b

Which is precisely D’Alembert’s solution, so we are done.

1
2
1
2

(d). Suppose first that u is a left moving wave. In particular, this
means that u, +u; = 0, where u(z,0) = g(z). Then, this is merely the
solution to the transport equation, so u(x,t) = g(z —t). Using this, we
also know that u:(x,0) = h(x). But vy = —¢'(x —t) = w(x,0) =
—¢'(x). Then, we see that h(z) = —¢'(z).

Similarly, if we have that u is a right moving wave, u satisfies u; —
u, = 0, with u(x,0) = g(x). Again, using the solution to the transport
equation, u(x,t) = g(z +t). This then shows that u; = ¢'(x 4 t) and
hence ¢'(z) = h(x), and these are the conditions for the solution being

a left and right moving wave.
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11. CHAPTER 2, PROBLEM 24

(a). Suppose u solves the wave equation in R x (0,00). Then, with
= 1 [7 ul(z,t)dz and p(t) = & [7 u2(z,t)dz. Then, u can of

course be solved using D’Alembert’s solution. Firstly, however, note:

. . . o0
Recalling that u;; = u,,, we can now integrate the expression f o Wugdr =

ffooo Utz dx by parts.

(e.) o0
o0
UpUgr T = Utux‘,oo — Uy Uyt AT
—0oQ —0oQ

Since g and h have compact support and noticing the form of D’Alembert’s

solution, this immediately implies that utux|iooo = 0. Then,

d d o0 o0
CRH) +Sp(t) = / tattped + / tattaydz = 0

—00 —00

And hence k(t) + p(t) is a constant with respect to t.

(b). Using parts (a) and (b) of the previous problem, we know that
u(z,t) = F(x +t) + G(xr — t) for some functions F', G. Noting the
dependence on our initial conditions for D’Alembert’s solution, we can
also conclude immediately that F' and G must have compact support.

Now, it is simple to see:

=F'(x+t)—G'(x —1)
u, = F'(x+t)+ G'(x—t)

And hence:
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/OO u — uide = —4 /OO F'(z +t)G'(x — t)dx

But for an; O((:Dompauctly supporte_doofunction, its derivative must also
be compactly supported. Suppose that the support of both of these is
contained in the interval [—M, M| for sufficiently large M. Then for
any x, it is never possible for x —2M and x +2M to both be contained
in [—M, M], since else the length of this interval would be at least 4.
In other words, for t > 2M, either G'(x —t) or F'(x + t) must vanish,

implying that

For sufficiently large ¢.



